
Bootstrap 2018 School: Integrability Problem Sets 3

Dispersion Relation from Matrix Quantum Mechanics

The goal of these exercises is to give some intuition about the physical origin of the
dispersion relation of the magnons in N = 4 SYM at finite coupling. For this purpose, we
will consider a certain matrix quantum mechanics which shares some properties with N = 4
SYM.

1 Dispersion relation and Zhukovsky variables

As explained in the lecture, the dispersion relation for the magnons describing the finite
coupling N = 4 SYM is constrained by the symmetry1 and is given by

eip =
x+

x−
, E =

1

2

1 + 1
x+x−

1− 1
x+x−

, (1)

where x± are the so-called Zhukovsky variables

g

(
x(u) +

1

x(u)

)
= u , x±(u) ≡ x

(
u± i

2

)
, (2)

with g =
√
λ/(4π).

1. Expand the dispersion relation (1) at weak coupling (g � 1) and compare them with
the dispersion relation of the SU(2) spin chain

eip =
u+ i

2

u− i
2

, E =
g2

u2 + 1
4

. (3)

2. Show that the dispersion relation (1) is equivalent to

E =

√
1 + 16g2 sin2

(p
2

)
(4)

2. As a function of u, the energy and the momentum defined in (1) have two branch cuts;
one associated with x+ and the other associated with x−. Check how they transform if
you cross both branch cuts. (Physically this transformation corresponds to the crossing
transformation.)

3. Show the following identity involving the Zhukovsky variables

x+(u)− x+(v)

1− 1
x−(u)x−(v)

=
x−(u)− x−(v)

1− 1
x+(u)x+(v)

. (5)

1Centrally extended psu(2|2) symmetry.
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2 Matrix quantum mechanics

One of the peculiar features of the dispersion relation shown above is the existence of the
branch cuts in the u-plane. We now try to argue that these branch cuts come from the
large N condensation of the eigenvalues of the matrices. Although there is some evidence
supporting this interpretation2, it is very hard to show this in N = 4 SYM. Instead, here we
analyze some simple matrix quantum mechanics3, which shares certain properties with the
N = 4 SYM.

The model that we are going to study is given by the following action

S =

∫
dt tr

[
1

2
(∂tZ)(∂tZ̄) +

1

2
(∂tX)(∂tX̄)− 1

2
(ZZ̄ +XX̄)− g2YM

8π2
[Z,X][Z̄, X̄]

]
, (6)

where Z and X are N × N complex matrices and Z̄ and X̄ are their conjugates. This
action can be obtained from N = 4 SYM by putting the theory on R × S3, performing the
dimensional reduction to R and keeping just a few terms neglecting all the other terms4.
Furthermore, in the following analysis we assume that Z and Z̄ are mutually commuting
matrices, namely [Z, Z̄] = 0. (We do not impose such conditions on other commutators.)

Before analyzing the model (6), let us consider an even simpler model

S =

∫
dt tr

[
1

2
∂tM∂tM − V (M)

]
, (7)

where M is a Hermitian N ×N matrix. The Hamiltonian of this model is given by

H = tr

[
−1

2

∂2

∂M2
+ V (M)

]
, (8)

with

tr

[
∂2

∂M2

]
=
∑
a,b

∂2

∂Mab∂Mba

. (9)

To analyze the model, it is useful to decompose the Hermitian matrix as

M = U †ΛU , (10)

where U is a unitary matrix and Λ is a diagonal matrix

Λ = diag(λ1, λ2, . . . , λN) (11)

2One can sometimes compute the same physical quantities both from localization and integrability. In
such cases, by comparing the two computations, one finds that the branch cuts of the u-plane indeed
correspond to the branch cuts formed by the condensation of the eigenvalues in the matrix model, which is
obtained as a result of localization. See for instance [1, 2].

3As you will see, even in this simple matrix quantum mechanics, the argument is not completely rigorous.
However it at least gives us some physical intuition into the origin of the branch cut.

4In [3], it was argued that the terms that we dropped are irrelevant for the quantity that we are computing.
However, here we will refrain from discussing such points or making the connection to the original N = 4
SYM, and just analyze the property of the model.
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4. Show5

∂λa
∂Mij

= UaiU
†
ja ,

∂U †ia
∂Mjk

=
∑
b 6=a

U †ibUbjU
†
ka

λa − λb
,

∂Uia

∂Mjk

=
∑
b6=a

UajU
†
kbUbi

λa − λb
.

(12)

5. Using the result of the previous exercise, show

tr

[
∂2

∂M2

]
=

1

∆(λ)

N∑
a=1

(
∂

∂λa

)2

∆(λ) +
∑
a<b

Kab

(λa − λb)2
, (13)

with
∆(λ) ≡

∏
a<b

(λa − λb) (14)

and Kab is a differential operator made up of U , U †, ∂
∂U

and ∂
∂U†

.

Since Kab is an operator made up only of U ’s, it can be neglected as long as we talk about
the singlet state, which is invariant under the U(N) transformation

M → gMg† ⇐⇒ λa : fixed , U → gU . (15)

The restriction to the singlet states also simplify the analysis of the wave function (which is
an energy eigenstate): Since the dependence on the U variables drop out, the wave functions
for the singlet states are functions of only λa’s. Therefore, it satisfies[

−1

2

1

∆(λ)

N∑
a=1

(
∂

∂λa

)2

∆(λ) +
N∑
a=1

V (λa)

]
Ψ(λ1, . . . , λN) = EΨ(λ1, . . . , λN) , (16)

Furthermore, due to the invariance under the U(N) transformation, the wave function has to
be symmetric with respect to the permutations of λa’s. Finding an eigenstate is in particular
simple if we consider

Φ ≡ ∆(λ)Ψ(λ1, . . . , λN) . (17)

since the problem reduces to the standard multi-dimensional quantum mechanics,[
−1

2

N∑
a=1

(
∂

∂λa

)2

+
N∑
a=1

V (λa)

]
Φ = EΦ . (18)

Since the new wave function Φ is completely antisymmetric under the permutation of λ’s, it
can be thought of as the multi-particle wave functions of free fermions in a potential. More
precisely, the ground state wave function ΦGS is given by the Slater determinant,

ΦGS = det (φn(λm)) , (19)

5 Hint: Use the relations dM = d(U†ΛU), U† = U−1 and 0 = d(U†U) = dU†U + U†dU . (Also the
identities like tr [diag(1, 0, 0, . . .) · Λ] = λ1 might also be useful.)
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where φn(λ) is a one-particle wave function of the n-th excited state[
−1

2

(
∂

∂λ

)2

+ V (λ)

]
φn = Enφn . (20)

Let us now go back to our original problem. Since Z and Z̄ are commuting, one can
simultaneously diagonalize them as

Z → UZU † = diag(z1, . . . , zN) , Z̄ → UZ̄U † = diag(z̄1, . . . , z̄N) . (21)

The same transformation also maps X fields to UXU †, which we will again denote simply
as X.

6. Show that the part of the Hamiltonian involving X fields can be written (after the
diagonalization of Z) as

HX =
N∑

a,b=1

[
− ∂2

∂Xab∂X̄ba

+ ω2
abXabX̄ba

]
, (22)

with the frequency

ωab ≡
√

1 +
g2YM

2π2
|za − zb|2 . (23)

Disclaimer: The discussion so far has been rigorous. From now on, the argument becomes
very handwaving. A more detailed discussion can be found in the paper [3] although even
there not all the steps are completely justified.

Let us now analyze this Hamitlonian by treating za’s as classical variables first and then
later taking into account the path integral over za’s. The state that we study is an analogue
of the single-magnon state, which takes the following form

|p〉 ∼
∑
n

eipntr

(
· · ·ZZZ X︸︷︷︸

n-th site

ZZZ · · ·

)
|0〉X . (24)

Here |0〉X is the ground state of the X oscillators. After diagonalizing Z’s we get

|p〉 ∼
∑
a,b

∑
n

eipn(za)
na†ab(zb)

L−n|0〉X =
∑
a,b

∑
n

(
eip
za
zb

)n

zLb a
†
ab|0〉X . (25)

Note that here we decomposed the X field Xab into the creation and annihilation operator
Xab = a†ab + aab and use the fact that aab annihilates the vacuum. As the wave function
contains the factor ∑

n

(
eip
za
zb

)n

=
1−

(
eip za

zb

)L+1

1−
(
eip za

zb

) , (26)
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it is sharply peaked in the large L limit at

1 = eip
za
zb
. (27)

This means that, in the (path) integral over za’s, we only need to consider the configurations
which satisfy (27). The next step is to take into account of the integral over za’s. It is
however very hard to perform it rigorously in the presence of the interaction with the X
fields. So let us just assume blindly that the ground state wave function for za’s are exactly
the same as the one for the free theory without any interaction with X’s.

The ground state wave function for the matrix theory Z and Z̄ can be obtained using
the same technique as the ones described above. Here we will not discuss the detail of the
computation (since anyway the whole discussion is hand-waving) and just state the final
result

Φ(z1, . . . , zN) =
∏
a<b

(za − zb) exp

[
−
∑
a

|za|2
]
. (28)

The expectation value of za’s can be computed from this wave function, and it turns out that
in the large N limit, the dominant contribution is given by the region (which is basically the
edge of the fermi surface of the quantum mechanics (20))

|za| =
√
N/2 . (29)

7. Evaluate the energy ωab (23) using the condition (27) and (29) and reproduce the
dispersion relation of the N = 4 SYM spin chain (4).

8. Make the whole argument rigorous and write a paper!
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