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Below is a bunch of mostly simple exercises (i.e. if you find yourself doing a hard
calculation, you might be doing it wrong, unless the problem is marked as hard). One is
encouraged to work on the problems which look more interesting to one’s taste, although
note that there are dependencies.

1 Tensor structures

Representation theory

1. (trivial) Check that only traceless-symmetric irreps reduce to trivial irrep under
Spin(d)→ Spin(d− 1).

2. Let us say that two Spin(d) irreps belong to the same family iff they differ only by
m1 (i.e. the length of the first row in the Young diagram), and denote the family
of ρ by [ρ]. Show that the families of [ρd] of Spin(d) irreps which reduce (for repre-
sentatives with sufficiently large m1) to a given Spin(d − 1) irrep ρd−1 are in 1-to-1
correspondence with Spin(d− 2) irreps to which ρd−1 reduces,

[ρd] 3 ρd−1 3 ρd−2. (1)

3. In the next two exercises we add a notion of parity to 2- and 3-dimensional Spin
representations in order to talk more concretely about parity-odd and parity-even
structures.1 Let Pin+(2) be the group consisting of elements (g, s), where g ∈ Spin(2)
and s = ±1, with multiplication law

(g1, s1)(g2, s2) = (g1g
s1
2 , s1s2). (2)

In other words, (1,−1) is a reflection and (eiφ/2, 1) is a rotation by φ.

(a) Show that irreps of Pin+(2) consist of a scalar •+, pseudoscalar •−, and spin-j
2-dimensional irreps j for half-integer j ≥ 1

2 .

1Note that this definition of parity may not be necessarily the one which is realized in a given CFT.
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(b) Derive the multiplication rules

•± ⊗ j = j,

j1 ⊗ j2 = (j1 + j2)⊕ (j1 − j2), (j1 6= j2),

j⊗ j = (2j)⊕ •+ ⊕ •−. (3)

(c) Show that under reduction to O(1) = Z2 integer-spin representations j reduce
to •+ ⊕ •−, while •± reduce to •±.

4. Let Pin+(3) be the group generated by rotations eiσiφ/2 and reflections σi, where
i = 1, 2, 3, and σi are the usual Pauli matrices. In other words, this is the group of
unitary 2× 2 matrices with determinant ±1. The center is generated by

P =

(
i 0
0 i

)
= σ1σ2σ3. (4)

(a) Explain how representations of Spin(3) ' SU(2) naturally extend to Pin+(3).
Show that under this natural extension P has eigenvalue i2j in spin-j represen-
tation. Check that this agrees with the intuitive action of P on tensor irreps.
We will refer to these irreps as parity-even and denote them by j+.

(b) Show that there is another family of irreps in which P has eigenvalue −i2j . We
will refer to these as parity-odd and denote them by j−.

(c) Derive tensor product multiplication rules for j±.

(d) Show that under reduction Pin+(3)→ Pin+(2) we have

j± → j⊕ (j− 1)⊕ · · · ⊕ 1⊕ •±. (5)

(Hint: A general hint to this exercise is to think about all irreps of Spin(3) as sym-
metric powers of the spinor irrep.)

Classification of correlation functions

1. Assume O is a primary operator. Show that if there is a differential operator D such
that DO is also a primary (for example, O = J is a current and DO = ∂µJ

µ is its
divergence), then we necessarily have (at least at separated points)

〈(DO)O†〉 = 0. (6)

In other words, two-point functions automatically satisfy all conservation constraints,
free field equations of motion, etc.
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2. Using the character identities

S2χ(g) =
1

2

(
χ(g)2 + χ(g2)

)
,

∧2χ(g) =
1

2

(
χ(g)2 − χ(g2)

)
, (7)

prove the character identity

S2(χ1 − χ2) = S2χ1 − χ1χ2 + ∧2χ2. (8)

Using it, show that the counting rule that we derived for symmetric three-point
tensor structures also works for conserved currents. (Hint: interpret the identity
as number of structures minus number of conservation equations plus number of
relations between these equations.)

3. Using our counting rules and representation theory exercises 3 and 4 above, recover
the results of 1508.00012, 1705.04278, 1708.05718 for the operators O and the number
of tensor structures appearing in (generic) 3d three-point functions

〈ψψO〉, 〈JJO〉, 〈TTO〉 (9)

respectively, taking parity into account. (Here J is abelian spin-1 current.)

4. How many four-point structures (or degrees of freedom) appear in (take parity into
account)

(a) 〈ψψψψ〉 in 3d

(b) 〈TTTT 〉 and 〈JJJJ〉 in 3d for abelian J . What about 〈JsJsJsJs〉 (identical
spin-s currents)?

(c) 〈JJJJ〉 for non-abelian SU(2) flavor current J in 3d.

(d) 〈TTTT 〉 in 4d (somewhat annoying)

5. A conformal block participating in a given four-point function

〈O1O2O3O4〉 (10)

is labeled (among other things) by (ρ, a, b), where ρ is the representation of the
exchanged operator O while a and b label the three-point tensor structures by which
it couples to the external operators O1O2 and O3O4. In other words, a and b label
the three-point tensor structures

〈O1O2O†〉(a) and 〈O3O4O〉(b). (11)
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For sufficiently large m1 of ρ, the number of choices for a and b depends only on the
family2 [ρ] (check this). Prove that the total number of choices of pairs of a and b
over all families [ρ] (“the number of conformal blocks”) is the same as the number of
four-point tensor structures

〈O1O2O3O4〉(c). (12)

For simplicity, ignore permutation symmetries and parity, but take conservation into
account. (Hint: use rep. theory exercise 2.)

2See the first rep. theory exercise.
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