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Exercises on Regge Physics

J. Penedones and A. Hebbar

1. Regge trajectories for the Coulomb potential

In this exercise, we will find the scattering amplitude of the non-relativistic
particle in the Coulomb potential. We will then deduce the Regge poles from
the scattering amplitude and compute the Regge trajectories.

Begin by writing the Schrodinger equation for this problem[
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where u = 4mU and k =
√

2mE is the momentum of a free particle with
mass m and energy E.
Choose the direction of incidence to be along the z-axis and appeal to axial
symmetry to argue that the solutions must be independent of φ.
The solution we are looking for should have an incident plane wave part,

exp(ikz) = exp

[
i
k

2
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]
,

and a scattered part which is radially outgoing,

exp(ikr) = exp

[
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]
.

This suggests that we try the ansatz ψ = exp[ ik
2

(ξ − η)]g(η). Show that
the resulting differential equation for g(η) is the confluent hypergeometric
equation:

η
d2g

dη2
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+ γkg = 0
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where γ = u
4k

. Choosing the solution regular at the origin we arrive at:

ψ(ξ, η) = exp

[
ik

2
(ξ − η)

]
1F1(iγ; 1; ikη)

Use the large x behaviour of the hypergeometric function:

1F1(a; b;x) ≈ Γ(b)

Γ(b− a)
exp[−a log(−x)] +

Γ(b)

Γ(a)
exp[x+ (a− b) log(x)] ,

and write the wave function in the following form in the large r limit 1

ψ ∼ exp [ikz − iγ log k(r − z)] +
f(k, θ)

r
exp [ikr + iγ log kr] .

This shows how the Coulomb potential modifies the incident wave and the
scattered wave even at large distances and leads to additional logarithmic
phases. In analogy with the case of short range potentials, we define f(k, θ)
to be the scattering amplitude. Show that

f(k, θ) =
γ

k(1− cos θ)
exp[iγ log(1− cos θ) + 2iσ0]

where σ0 is the argument of Γ(1 − iγ) i.e Γ(1 − iγ) = |Γ(1 − iγ)| exp(iσ0).
Determine the differential and total cross section.

In order to calculate the Regge trajectories, we first expand the wave function
in partial waves. Show that

ψ =
∞∑
l=0

Pl(cos θ)wl(r) (3)

where

wl(r) ∼
e−ikr−iγ log(2kr)+iπl

r
− eikr+iγ log(2kr)

r

Γ(l + 1− iγ)

Γ(l + 1 + iγ)
, r →∞ . (4)

Hint 1: In integrals of the form
∫
dx(1 − x)a−ibPl(x) it might be useful to

use Rodrigues formula for the Legendre polynomial Pl(x) = 1
2ll!

dl

dxl
[(x2 − 1)l]

followed by repeated integration by parts.

1Assuming we don’t look too close to the forward direction i.e |r − z| is always large.
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Hint 2: In integrals of the form
∫
dxeikrxPl(x)h(x) it might be useful to write

eikrx = 1
ikr

d
dx
eikrx and integrate by parts to get the leading term at large r.

Conclude that

e2iδl(k) =
Γ(l + 1− iγ)

Γ(l + 1 + iγ)

and therefore the Regge trajectories are given by

l = αn(E) = −n− 1 + i
mU√
2mE

where n = 0, 1, 2, . . . . Plot the first 3 Regge trajectories in the (E, l) plane.
Check that you reproduce the Hydrogen atom spectrum when you compute
the energies of stable bound states.

2. Virasoro-Shapiro amplitude

The tree level 2 to 2 scattering amplitude of dilatons (massless scalars) in
superstring theory is given by
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where GN is the 10 dimensional Newton constant, α′ is the square of the
string length and s, t and u are the usual Mandelstam invariant satisfying
s+ t+ u = 0.
The goal of this exercise is to use this explicit amplitude as a playground to
test the methods of Regge theory. In particular, we can compute its high
energy limit in two different ways. One way is to use Regge theory to deter-
mine the contribution of the leading Regge trajectory. Another way is just
to use the asymptotic expansion of the Gamma function.

Start by using the Stirling approximation of the Gamma functions to derive
the high energy behaviour

T (s(1± iε), t) ≈ 32πGN

α′
e∓

iπα′t
4

Γ
(
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4

)
Γ
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1 + α′t

4

) (α′s
4

)α0(t)

, s→∞ , (6)

where α0(t) = 2 + 1
2
α′t.
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Let us try to re-derive this result using Regge theory. First, we consider the
t-channel partial wave expansion

T (s, t) =
∞∑
l=0

(2l + 1)fl(t)Pl(z) , (7)

where z = cos θt = 1 + 2s
t

, Pl are the Legendre polynomials and the sum
only includes even spins. Then we notice that the amplitude has poles at
t = 4n/α′ for n = 0, 1, 2, . . . . Take the residue at these poles and derive

∞∑
l=0

(2l+1)Pl(z)Rest= 4n
α′
fl(t) = Rest= 4n

α′
T (s, t) = −128πGN

(α′n!)2

(nz
2

)2n+2

+O(z2n) .

Notice that the sum over l truncates because this is a polynomial of z. Con-
clude that fl(t) has poles at t = 4n/α′ for n = l/2−1, l/2, l/2+1, l/2+2, . . . .
Plot the particle spectrum in the (m2, l) plane (Chew-Frautschi plot). Show
that the first pole gives

fl(t) ≈
r(l)

t−m2(l)
, m2(l) =

2

α′
(l − 2) , (8)

and determine the residue r(l). This pole can also be interpreted as the
leading Regge trajectory

fl(t) ≈
β0(t)

l − α0(t)
, α0(t) = 2 +

1

2
α′t . (9)

Determine β0(t). Compare the contribution of the leading Regge trajectory
to the scattering amplitude in the high energy limit with (6).

Extra: Extend the analysis to sub-leading terms in the large s expansion.
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